Ivan has got an array of n non-negative integers a1, a2, ..., an. Ivan knows that the array is sorted in the non-decreasing order.
Ivan wrote out integers 2a1, 2a2, ..., 2an on a piece of paper. Now he wonders, what minimum number of integers of form2b (b ≥ 0) need to be added to the piece of paper so that the sum of all integers written on the paper equalled 2v - 1 for some integer v (v ≥ 0).
Help Ivan, find the required quantity of numbers.
The first line contains integer n (1 ≤ n ≤ 105). The second input line contains n space-separated integers a1, a2, ..., an(0 ≤ ai ≤ 2·109). It is guaranteed that a1 ≤ a2 ≤ ... ≤ an.
Print a single integer — the answer to the problem.
4 0 1 1 1
0
1 3
3
In the first sample you do not need to add anything, the sum of numbers already equals 23 - 1 = 7.
In the second sample you need to add numbers 20, 21, 22.
题目大意:给你一个n表示有n个ai,ai表示2ai。问你需要再加几个形如2b的数,让他们的总和为2v-1。
解题思路:首先看数据范围,如果想通过暴力是完全行不通的。所以观察所求的2v-1,这个数必然是由2进制所有都为1组成的。然而他给你ai是2ai,是2的次方。所以我们合并相同的ai,2^a+2^a=2*(2^a)=2^(a+1),所以如果有相同的,让ai自加,然后放入set容器中判断,如果还有相同的,从容器中删除后再将该数自加,重复,直到没有相同的该数,放入set中。最后用最大的a减去set的大小即为答案。可以自己模拟一下过程,就能理解了。
#includeusing namespace std;#define LL long longint main(){ int Maxn,a; int n,i,j,k; while(scanf("%d",&n)!=EOF){ set S; S.clear(); Maxn=0; for(i=0;i a?Maxn:a; } printf("%d\n",Maxn+1-S.size()); } return 0;}